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Abstract

A knowledge of the rigid body properties of a structure can be important in vibration analysis, control, optimisation and

structural dynamic problems in general. Whenever a system has a complicated shape and the location of its centre of mass

and inertia tensor cannot be easily determined by purely theoretical tools, it may be convenient to use measured

experimental dynamic data and to apply appropriate methods to evaluate those properties.

In the present work a parametric modal identification method is investigated, for the simultaneous estimation of all the

rigid body properties, using information from measured Frequency Response Functions encompassing the low-frequency

modes. An important numerical tool has been developed to act as an indicator factor for mode shape selection, which can

help to build the best available modal matrix. The accuracy of the estimated parameters is evaluated through the

application of the method to a theoretical example, as well as to an actual structure specifically designed and built for this

purpose.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The evaluation of the rigid body properties of a structure (mass, centre of mass location and inertia tensor)
is a very important task during a static or dynamic design process. These properties can be estimated using
analytical approaches, such as solid or finite element modelling. In fact, when a model of the structure, exists
from the initial design process, very little additional time is required to obtain the inertia properties. If such a
model does not exist, or when modifications are made to the original structure the establishment of an
accurate model can be very time consuming. The alternative may reside on the use of experimental data readily
available from measurements.

This problem has been addressed by various authors [1–5] that have developed dynamic me-
thods for the identification of rigid body properties; those methods may be separated into two main
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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categories:
�
 Time domain methods;

�
 Frequency domain methods.
The early Time domain methods to mention are the classical pendulum methods, which can effectively
determine some rigid body parameters and are still in use [6], but for complex structures such an estimation
may not be that easy. For instance, the pendulum test requires special skills and is prone to large experimental
errors. More recently, some authors developed other variations for the Time domain methods, like Pandit [7],
who presents a systematic way to calculate the rigid body characteristics through a careful selection of rigid
body modes and mode shapes obtained from time domain impact data. All of the parameters are determined
by solving simultaneous linear equations. Hahn [8] uses the time domain test data of a six-axes shaking table
system where the exciter forces are measured in addition to the acceleration responses. The advantage of these
methods is the direct evaluation of the test data without transforming it into the frequency domain.
A disadvantage is that if the system under observation does not behave like a rigid body in the excited
frequency range, low pass filtering of the test data must be performed.

Frequency domain methods can circumvent this drawback because it is possible to separate the rigid and
elastic system behaviour, even if the first elastic natural frequency is very low. The Frequency domain methods
can be divided into three groups:
�
 Inertia Restraint Methods (IRM);

�
 Methods of Direct Physical Parameter Identification (MDPPI);

�
 Modal Methods (MM).
The Inertia Restraint Methods or Mass Line Methods have been widely studied and they stand on the
principle that the dynamic response of freely supported structures is characterized, in the low-frequency
region, by a constant term designated as ‘‘inertia restraint’’ or ‘‘mass line’’. They are suitable for the cases
where the rigid and flexible modes are well separated. Some investigators have explained how to determine the
mass line of a typical Frequency Response Function (FRF) of a free–free structure, as it can be found in the
works of Ewins [9], Lamontia [10], Crowley [11] and Tominaga [12]. These methods can be grouped into:
iterative and direct methods, according to the way the inertia properties are obtained, either assuming the
knowledge of one or several properties, and by an iterative process calculating the remainders, or by using
directly and solely the data extracted from measured FRFs. Among the researchers that have made use of
iterative methods, one can distinguish Okubo and Furukawa [13], Wei and Reis [14], Furukawa [15] and
Okuzumi [16]. Concerning the direct processes one can refer the works of Bretl and Conti [17], Fregolent
[18,19], and more recently Lee et al. [20], Urgueira and Almeida [21] and Almeida [29].

The Direct Physical Parameter Identification Methods allow for the determination of mass, stiffness and
damping parameters through the direct use of measured FRFs. Johnson and Snyder [22], Mangus and
Passarelo [23] and Huang [24,25] are amongst those who have developed these kinds of methods.

The Modal Methods are based upon the orthogonality relationship between the mass matrix and the rigid
body modes. This class of methods is particularly appropriate whenever the rigid body and the flexible modes
are not well separated, as it is also required by the MDPPI methods. Generally the experimental data are
available from tests undertaken on ‘‘quasi-free’’ or ‘‘softly’’ suspended structures. A modal identification
procedure is subsequently required to extract all the modal properties of the available rigid body modes. The
main difficulty associated with these methods is that, in general, not all the rigid body modes can be
simultaneously excited during an experimental test.

2. Theoretical background of modal methods

In the present work the determination of the ten inertia parameters follows closely the methodology
adopted in the works of Bretl and Conti [17,26] and Toivola and Nuutila [27]. These methods make use of
measured responses due to the excitation applied in various points and directions. These methods require as
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many exciter locations/directions as needed to significantly excite all the six rigid body modes. In theory one
excitation may be enough, in contrast with the minimum three excitations required by the IRM methods
[20,29].

The FRFs measured at the response points for each excitation condition are then used to extract the modal
properties (natural frequencies, damping ratios and mode shapes), using well-established identification
methods [28]. If the origin of the physical coordinate system is established as a reference, the orthogonality
property for mass-normalised mode shapes can be expressed as

UT
0M0U0 ¼ I, (1)

where M0 and U0 represent, respectively, the 6� 6 mass matrix and the 6� 6 mass-normalised mode shape
matrix with respect to the origin.

The first three rows of U0 are associated to the translational motion whereas the last three rows are
associated to the rigid body rotations of the test article. The mass matrix M0 can be obtained as

M0 ¼ U�T0 U�10 . (2)

The 6� 6 mode shape matrix U0 is an invertible matrix, since the six rigid mode shapes are linearly
independent vectors. However, from the identification process applied to the measured FRFs, one obtains the
mode shape matrix with respect to the physical coordinate system where the measurements are taken, i.e., U
rather than U0. The relationship between both matrices is given by
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(3)

or simply

U ¼ R0U0, (4)

where R0 represents the transformation matrix of the rigid body modes related to the N triaxial
accelerometers. Generally, the resulting over-determined linear system of equations can be solved in a least-
squares sense:

U0 ¼ ðR
T
0R0Þ

�1RT
0U. (5)

Numerically we may be tempted to conclude that U0 can be obtained if R0 contains at least data from two
triaxial measurement points. However, Lee et al. [20] proved that a minimum of three triaxial measurement
points are needed to evaluate ðRT

0R0Þ
�1. In the present paper, we have carried out several measurements with

different locations for the triaxial accelerometers; the best results were obtained when the three accelerometers
formed a regular triangle, thus confirming the conclusions of Lee et al. [20].

By inverting Eq. (5) one obtains U0
�1, and using directly this result in Eq. (2) one can calculate M0.

Therefore, the resulting matrix M0 represents the best least-squares mass matrix related to the origin based on
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the six extracted mode shape vectors at N measured response locations and is given by

(6)

where the components of the inertia tensor are referred to the assumed original coordinates. The mass of
the rigid body can be calculated as the average of the first three diagonal terms of M0. Equating the
non-zero elements of the upper right quadrant of matrix, Eq. (6), to the same elements in mass matrix referred
to the centre of mass, six equations are obtained. The estimates for the coordinates of the centre of mass are
given by

xcm ¼
1

2m
ðm26 �m35Þ; ycm ¼

1

2m
ðm34 �m16Þ; zcm ¼

1

2m
ðm15 �m24Þ, (7)

where mij are the corresponding elements of the estimated mass matrix M0. Once the coordinates of the centre
of mass have been obtained from Eq. (7), the mass matrix can be transformed into the coordinate frame that
has its origin at the centre of mass by using the following transformation:

(8)

where Rcm represents the transformation matrix to the centre of mass coordinates, given by

Rcm ¼

0 �zcm ycm

zcm 0 �xcm

�ycm xcm 0

2
64

3
75. (9)

As stated in works by Bretl and Conti [17,26], all the six rigid body modes must be extracted/identified prior
to the estimation of the mass matrix. However, in practical set-ups there might be difficulties in exciting or
identifying some of the rigid body modes. The work of Toivola and Nuutila [27] partially solves this problem
as it requires only a subset of the 21 independent orthogonality conditions, or in other words it requires only
four identified modes. In fact, from the orthogonality condition between two modes with respect to the mass
matrix (Eq. (1)), it follows that

/0
T
i M0/0j ¼ dij with dij ¼

1; i ¼ j;

0; iaj:

(
(10)

Taking into account the nature of the rigid body mass matrix, it turns out that if n modes are
estimated there are n(n+1)/2 independent equations. As ten unknowns are to be determined, Toivola
and Nuutila’s method [27] only requires at the least four mode shapes. If five or six modes can be
estimated, the resulting set of equations can be solved in a least-squares sense. By using this method only one
mass value is obtained. The components of the inertia tensor are referred to the origin of the system of
coordinates and should be transformed to the centre of mass using the coordinate transformation as presented
in Eq. (8).

In practical set-ups it is difficult to excite simultaneously all the six rigid body modes. If some of them are
weakly excited, it could lead to erroneous estimation of the ten properties. In this work a new approach is
used, where the modal matrix U0 is formed with the best modes available from different excitation conditions.
The election of the best modes is carried out by using a valuable indicator—the Norm Indicator (NI) [29,30].
In fact, with this indicator it is possible to select the most excited modes obtained from different sets
of identified experimental modes. The best modes will form the final modal matrix U0 to be used in
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Eqs. (2) or (10). This indicator can be calculated as

NIðoÞ ¼ 20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ððReðaiðoÞÞÞ
2
þ ðImðaiðoÞÞÞ

2
Þ

s !
,

n ¼ number of FRFs; ð12Þ

where Re and Im are the real and imaginary parts of the n aiðoÞ FRFs related to each measuring direction
versus excitation force.

This approach solves the difficulties inherent to Bretl and Conti and Toivola and Nuutila methods, as it is
always possible to build a U0 matrix containing the best modes resulting from various excitation conditions.

3. Test cases

In this paper two case studies are presented: the first is a numerical case and the second is an experimental
one.

3.1. Test Case I—numerical

For the rigid body described in Fig. 1, three measurement points and five applied forces are considered. The
three measurement points were selected taking into account the recommendations proposed by Lee et al. [20].
For the applied forces F 0x ;F0y ; and F0z the suspension is performed as presented in Fig. 2—set-up A, when
the suspension springs are applied in the horizontal plane passing through the centre of mass; for the forces
Fig. 1. Characteristics of the rigid body in test case I.

Fig. 2. Different configurations of the suspension.
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Fig. 3. Receptance FRFs obtained at each point in all three directions for each applied force in test case I (a) F0x (set-up A), (b) F0y

(set-up A), (c) F0z (set-up A), (d) F1x (set-up B), (e) F 2y (set-up B). , x1; , y1; , z1; , x2; , y2; , z2; , x3;

, y3; , z3.
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F1x and F 2y , although the suspension springs are the same, these are applied in the horizontal plane parallel to
the centre of mass (Fig. 2, set-up B). On each measurement point the receptance FRFs are calculated
according to the three orthogonal directions x, y, z.

Low proportional damping is considered in these simulations and no artificial noise is added to the FRFs.
In this test case each spring has the following stiffness properties: kx ¼ 10Nm�1, ky ¼ 50Nm�1and

kz ¼ 20Nm�1.
The modulus of the receptance FRFs are presented in Fig. 3. These receptances are calculated for each

applied force and three orthogonal coordinate directions.
As shown in Fig. 3, none of the applied forces could excite all of the six rigid body modes, so we have

decided to use the approach presented in Section 2 to obtain the information/properties about all the rigid
body modes. Specifically, it is possible to use the information of the best available rigid body modes through
the NI, defined in Eq. (12). This gives us not only information about the most excited modes, but also about
their level of excitation.

By observing the results obtained with the NI (Fig. 4) for the excitation forces F 0x ; F 0y and F 0z with spring
suspension in set-up A, and excitation forces F 1x and F2y with spring suspension in set-up B, one concludes
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Fig. 4. Norm Indicator results with forces (a) , F 0x ; , F 0y ; , F0z in set-up A and (b) , F 1x ; , F2y in set-up B.
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Fig. 5. Results of the mass parameter and relative error for (a) sets 1 and 2 using Bretl and Conti method and (b) for sets 1, 2 and F 2y with

Toivola and Nuutila method. , m; –J–, error m.
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that there are forces for which the rigid body modes are more excited than others or even not all of the rigid
body modes are excited. In this particular case, for set-up A the force F 0x excites mostly modes number 1, 4
and 6, F0y modes number 3, 5 and 6 and F0z modes number 2, 4 and 5. For set-up B, force F1x excites mostly
modes number 1, 4 and 6, while F 2y excites preferably modes number 1, 2, 3, 5 and 6.

For each set of nine FRFs obtained for each excitation, the necessary modal analysis is undertaken in order
to obtain information about the modal parameters (natural frequency, mode shape and damping ratio). This
process makes use of the modal analysis software MODENT [31], implementing a specific tool single input-
multiple output (SIMO) analysis.

The results obtained from the modal analysis and from the NI for all the excitations, are gathered in order
to carry on our study. The conclusion from the NI is important to fill up the matrix with the best (more
excited) rigid modes (relative to the nine measured directions). With such a matrix, relative to the nine
measured directions with the most excited mode shapes, we proceed to the necessary coordinate
transformation (Eq. (4)) to obtain the rigid body modes matrix relative to the defined origin.

For both suspension conditions A and B, the rigid body modal matrix is constructed (relative to the nine
measured directions) with the following information:

�Set 1

F 0x ðset�upAÞ � f1st mode

F 0y ðset�upAÞ �

3rd mode

5th mode

6th mode

8><
>:

F 0z ðset�upAÞ �
2nd mode

4th mode

�

8>>>>>>>>><
>>>>>>>>>:

� Set 2

F1xðset�upBÞ �
1st mode

4th mode

�

F2yðset�upBÞ �

2nd mode

3rd mode

5th mode

6th mode

8>>><
>>>:

8>>>>>>>>><
>>>>>>>>>:

.

Figs. 5–7 show the results that are obtained using the modal method developed by Bretl and Conti and the
method proposed by Toivola and Nuutila. The results of the application of force F2y in set-up B, for the inertia
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parameters with sets 1 and 2, are obtained using only Toivola and Nuutila method, as the former method
requires the identification of all the six rigid body modes. Fig. 5 also shows the relative error remaining
on the mass parameter (m) of the rigid body. Fig. 8 shows the relative error obtained on the vector of
the centre of mass coordinates Ccm ¼ fxcm ycm zcmg and on the vector of moments and inertia products
Jcm ¼ fJxx Jxy Jxz Jyy Jyz Jzzg.

3.1.1. Remarks
1.
 From the observation of these results, first a conclusion can be extracted: with the use of the information
from rigid body modes excited by different forces, it became possible to determine accurate rigid body
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properties; this would have been impossible if the new approach tool had not been used, because none of
the applied forces excite all the six rigid body modes. However, the Toivola and Nuutila method provides
better results than the Bretl and Conti method, as shown in the corresponding graphics of the calculated
error on vectors Ccm and Jcm.
2.
 On the other hand, from the results obtained with the excitation force in set-up B, one can conclude that the
Toivola and Nuutila method allows for the determination of the majority of the parameters with small
error percentage. The most critical parameter is the inertia moment Jyy and inertia products Jxy, Jyz as they
require the information about the non-excited rigid body modes related to the yy rotation.

3.2. Test Case II—experimental

An experimental case study is based on the test article presented in Fig. 9. The measurement points have
been selected and three excitation forces have been applied via an impact hammer with a rubber tip (BK 8202).
Once again, the measurement points were selected taking into due account the recommendations proposed by
Lee et al. [20]. Flexible springs with low mass have been used to suspend the rigid body. A triaxial
accelerometer (BK 4506 B) was used for the measurements. The FRFs have been measured and processed by a
four channel BK 2035 analyser, allowing for the simultaneous acquisition of the three responses and one force,
in the range 0–12.5Hz.

The inertia parameters of the experimental test case have been obtained using the SolidWorks software;
these values are here assumed as the reference values for the sake of comparison:

Mass ¼ 15.69 kg
Centre of mass coordinates relative to each origin: (mm)

Origin I Origin II Origin III

xg1 ¼ 177:25 xg2 ¼ 75:45 xg3 ¼ 39:15

yg1
¼ 30:40 yg2

¼ �184:42 yg3
¼ 86:08

zg1 ¼ �5:35 zg2 ¼ �61:069 zg3 ¼ 127:43

Inertia moments relatiely to the centre of mass cocordiantes: (kgm2)

Jxx ¼ 0:35733194 Jxy ¼ 0:07722671 Jxz ¼ �0:08736156

Jyx ¼ 0:07722671 Jyy ¼ 0:39469014 Jyz ¼ �0:06919817

Jzx ¼ �0:08736156 Jzy ¼ �0:06919817 Jzz ¼ 0:31706832
Fig. 9. Rigid body studied in the experimental test case.
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Fig. 10. Receptance FRFs for each applied forces in the experimental test case; (a) force 1, (b) force 2, (c) force 3. , x1; , y1;

, z1; , x2; , y2; , z2; , x3; , y3; , z3.
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At a second stage a SIMO modal analysis was performed using MODENT [31] for the identification of the
modal parameters. Fig. 10 represents all of the nine FRFs obtained for each excitation force.

In Fig. 11 the results obtained with the NI for all the applied forces are presented.
Using the NI [29,30], one expects that the results can be improved by using not only information about the

rigid body modes obtained from only one excitation force, but also the information available from the
different set of modes gathered for several forces, such as demonstrated in test case I.
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Fig. 11. Norm Indicator results for the experimental test case with applied forces. , force 1; , force 2; , force 3.

Fig. 12. Hybrid MIF results for each applied force in the experimental test case: (a) force 1, (b) force 2, (c) force 3.
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In order to assess the performance of the NI and also to help us choosing which rigid body modes should be
selected for each force (to construct the matrix of all rigid modes related to the nine measured directions) it was
decided to use two other Mode Indicator Functions (MIF) together with the NI. These MIFs are calculated for
each excitation force with the information of the nine FRFs measured with the three triaxial accelerometers:
1.
 NI [29,30].

2.
 Hybrid MIF [32]—estimate MIF of all FRFs measured with three triaxial accelerometers, using both real

and imaginary parts of the FRFs.

3.
 PRF MIF—developed by Rades and Ewins [33,34].
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Fig. 13. PRF MIF results for each applied force in the experimental test case: (a) force 1, (b) force 2, (c) force 3.
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The graphics referring to the application of the hybrid MIF and PRF MIF to the nine FRFs are presented
in Figs. 12 and 13, respectively.

With that information it was decided to define five sets combining all the information, three of them based
on MIFs information, and the remaining two defined with no particular criterion:

Set I ðNo criterionÞ

1st mode� force 2

2nd mode� force 2

3rd mode� force 3

4th mode� force 3

5th mode� force 1

6th mode� force 1

8>>>>>>>><
>>>>>>>>:

; Set II ðPRF�MIFÞ

1st mode� force 1

2nd mode� force 2

3rd mode� force 3

4th mode� force 2

5th mode� force 2

6th mode� force 1

8>>>>>>>><
>>>>>>>>:

,

Set III ðNIÞ

1st mode� force 1

2nd mode� force 2

3rd mode� force 3

4th mode� force 3

5th mode� force 2

6th mode� force 1

8>>>>>>>><
>>>>>>>>:

; Set IV ðNo criterionÞ

1st mode� force 1

2nd mode� force 2

3rd mode� force 3

4th mode� force 3

5th mode� force 1

6th mode� force 3

8>>>>>>>><
>>>>>>>>:

,
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Set V ðHybrid�MIFÞ

1st mode� force 1

2nd mode� force 3

3rd mode� force 3

4th mode� force 3

5th mode� force 1

6th mode� force 1

8>>>>>>>><
>>>>>>>>:

.

The modal matrix, relative to the nine measured directions is constructed with the information of the most
excited mode shapes, for sets II, III and V, which can be observed in Figs. 11–13, respectively.

Following the definition of each set, it is necessary to check their performance comparatively to three
assumed coordinate origins. The three predefined coordinate origins correspond to the position of the three
triaxial accelerometers. The distance between each origin and the centre of mass, ~di!cm, is
�

(a

Fig

me

C
 e

rr
or

 [
%

]

(a

Fig

Nu
Origin I—accelerometer 1, ~d1!cm ¼ 207:1mm;

�
 Origin II—accelerometer 2, ~d2!cm ¼ 208:4mm;

�
 Origin III—accelerometer 3, ~d3!cm ¼ 158:7mm.
The relative errors for the mass value, the vector position of centre of mass Ccm and the vector of moments
and products of inertia Jcm, for each data set and for each considered origin are presented, respectively
in Figs. 14–16.

If all the parameters errors are added, the following equation is obtained:
P

Errors ¼P
ðErrorðmÞ þ ErrorðCcmÞ þ ErrorðJcmÞÞ. The results are presented in Fig. 17.
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. 14. Level of error of the mass parameter, for various sets and origins using (a) Bretl and Conti method and (b) Toivola and Nuutila

thod. , Origin I; , Origin II; ’, Origin III.
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. 15. Level of error of the centre of mass coordinates, for various sets and origins using, (a) Bretl and Conti method, (b) Toivola and

utila method. Origin I, Origin II, ’ Origin III.
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Fig. 16. Level of error of the inertia tensor parameters, for various sets and origins using (a) Bretl and Conti method and (b) Toivola and

Nuutila method. , Origin I; , Origin II; ’, Origin III.
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Fig. 17. Summation of all the parameters errors for the various sets and origins (a) Bretl and Conti method and (b) Toivola and Nuutila

method. , Origin I; , Origin II; , Origin III.
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4. Conclusions

From the present study some important conclusions can be drawn:
1.
 The quality of the obtained results for the inertia parameters with both Bretl and Conti and Toivola and
Nuutila methods is highly dependent on the quality and quantity of the identified rigid body modes.
2.
 The main restriction for the use of Bretl and Conti method is associated to the number of excited rigid body
modes. In fact this method cannot be used when not all the rigid body modes are excited or a double mode
exists. In contrast, Toivola and Nuutila method does not have this problem for the determination of the ten
unknowns, since it requires at least four identified mode shapes. However, the results improve as soon as six
rigid body modes are used (see case I for force F 2y—Figs. 5 and 8).
3.
 Another conclusion is that better results can be obtained if one uses the information of the rigid body
modes extracted from the FRFs resulting from several forces. In fact, the best modes can be selected by
using the concept of NI, which can reveal a particular set in the present study (set III—experimental case).
This indicator shows (i), for any applied force(s) and in the frequency range of interest, how many rigid
modes exist and (ii) for a set of applied forces, which are the most excited modes. This characteristic is not
revealed in the other two indicators that have been used (Hybrid MIF and PRFMIF—Figs. 12 and 13) (see
results obtained with sets II, III, V, for experimental case—Figs. 14–17). The importance of the use of this
NI is illustrated with the results obtained for sets II and III. In fact, the only difference resides on the choice
of the fourth rigid body mode to construct the modal matrix; in the first set it was selected the one obtained
from force 2, whereas in the second set it was selected the one from force 3.
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4.
 The parameters referring to the centre of mass coordinates and inertia tensor are better obtained with
Toivola and Nuutila method rather than with Bretl and Conti method. This is not always the case for the
mass value (see Figs. 5 and 14). However, this aspect is not so critical, as the mass property can be evaluated
with alternative simple methods.
5.
 Observing the results obtained for the errors on the centre of mass coordinates with Toivola and Nuutila
method, it can be verified that there exists a relation between these results and the distance between the
origin of the referential coordinates and the centre of mass of the rigid body. As it can be seen in Fig. 15, the
results improve as the distance increases.
6.
 The results presented in Fig. 14 also show that in both methods the relative error in the rigid body mass is
invariant with respect to the chosen origin. The same conclusion is true for the relative error of Jcm in
Toivola and Nuutila method, Fig. 16.
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